

Characterisation of the Multidimensional Performance Risks Associated with Building Energy Retrofits

Niall Dunphy & Aveen Henry
Cleaner Production Promotion Unit, Department of Civil & Environmental
Engineering, University College Cork

May 2012

Background

"increases in anthropogenic greenhouse gas concentrations is very likely to have caused most of the increases in global average temperatures since the mid-20th century

IPCC 4AR 2007

Graphic attribution: http://www.whataretheywaitingfor.com/global-climate-change.html

Background

- Current approach to measuring performance
- ▶ Interests, drivers and motivations of various stakeholders and potential conflicts among them

Multidimensional Performance

Lifecycle Perspective

Technological Risks

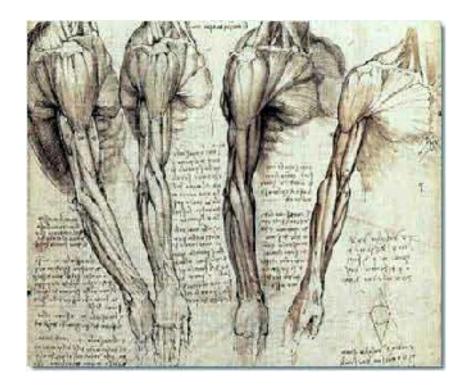
chosen solution may not work as promised, resulting in diminished returns in each of the performance strands

Technical Risks

commissioning of the solution may not be of sufficient quality or may take additional time and resources

Longevity

the solution's lifespan may be less than planned



The Human Factor

the solution may not be used correctly or optimally by users resulting in reduced performance in each strand

Maintenance

▶ the degree of upkeep required for the solution to achieve the required performance may be greater than anticipated



Energy costs

cost of energy may move contrary to assumptions used in decision-making

World Oil Prices in Three Cases, 1980-2035

Source: Energy Information Administration, Annual Energy Outlook 2010

Decommissioning Risks

envisaged end of life management of the chosen technology may prove not feasible

De-carbonisation of Energy

• energy saved, *i.e.*, avoided consumption, may have reduced carbon intensity

GHG Intensity of UK Electricity, 2010-2050

Conclusions...

Acknowledgement

This work was supported by the Carbon Neutral Buildings Project at the Department of Civil & Environmental Engineering, University College Cork funded through a private donor

Contact details:

Niall Dunphy n.dunphy@ucc.ie www.ucc.ie/cppu